CONCLUSIONS

Thus, the investigated three layers of stratified were formed on the ground surface and are most buried snow patches (firn). The buried ice has isotope composition similar to that of snow in the area. The sediments that host the buried ice bear spore-pollen assemblages corresponding climates of Late Pleistocene glacials.

The presence of buried firn, ice, and ice soil in **upper sedimentary** section of the Lena-Amga Plain means that the upper syngenetic permafrost of the area **underwent** a more complex evolution than it was thought before. Until recently, syngenetic frozen in Central Yakutia was attributed to a cold and dry climate with sharp seasonal temperature watiations which produced wedge ice and maintained a large extent of a thick ice complex. However, the ed thickness of the ice complex and the existence of several layers of buried snow recrystallized to **nt degrees** indicates that syngenetic permafrost seas formed in a relatively wet climate at quite low summer air temperatures, as it commonly occurs in **subject to glaciation**. On the other hand, the very fact of firn preservation and burial is evidence of rapid sedimentation which may occur only unectonic (or rather glacial-tectonic) subsidence.

According to climate and permafrost reconstructhe greatest portion of syngenetic permafrost in Yakutia originated under the influence of a ice sheet, most likely the Verkhoyansk one.

References

Craig H., 1961. Isotopic variations in meteoric waters. Science, 133, 133–149.

Dansgaard W., 1964. Stable isotopes in precipitation. Tellus, 19, 435–463.

Ferronsky V.I., Polyakov V.A., 2009. The Isotope Composition of the Earth's Hydrosphere [in Russian]. Nauchnyi Mir, Moscow, 632 pp.

Ivanov M.S., 1984. Cryogenic structure of Quaternary sediments in the Lena-Aldan Basin [in Russian]. Nauka, Novosibirsk, 126 pp.

Katasonov E.M. (Ed.), 1979. Structure and Isotope Ages of Alas Deposits in Central Yakutia [in Russian]. Nauka, Novosibirsk, 96 pp.

Katasonov E.M., 1975. Cryological-facies analysis of Pleistocene deposits and paleogeography of Central Yakutia, in: Pleistocene Paleogeography and Periglacial Environments [in Russian]. Nauka, Novosibirsk, pp. 16–22.

Popp S., 2006. Late Quaternary Environment of Central Yakutia (NE Siberia): Signals in Frozen Ground and Terrestrial Sediments. Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam, Potsdam, 85 pp.

Soloviev P.A., 1959. Permafrost in the Northern Lena-Amga Plain [in Russian]. Izd. AN SSSR, Moscow, 144 pp.

Spektor V.B., Spektor V.V., 2002. The origin of the Lena-Amga high periglacial plain. Kriosfera Zemli, VI (4), 3–12.

Spektor V.B., Spektor V.V., Bakulina N.T., 2008. New data on the Ice Complex of the Lena-Amga rivers plain (Central Yakutia), in: Proc. Ninth Intern. Conf. on Permafrost, Univ. of Alaska Fairbanks, Fairbanks, Book 2, pp. 1681–1684.

> Received 22 February 2011

Zemli, 2011, vol. XV, No. 4, pp. 21-25

http://www.izdatgeo.ru

LANDSCAPE GEOCHEMICAL TRACERS OF CONTAMINATION IN DELTAS OF RIVERS DISCHARGING INTO THE ARCTIC BASIN

E.M. Korobova¹, N.G. Ukraintseva², V.V. Surkov³, E.A. Dombrovskaya²

 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19, Kosygin str., Moscow, 119991, Russia; korobova@geokhi.ru
Institute of Earth's Cryosphere, Siberian Branch of the Russian Academy of Sciences, PO box 1230, Tyumen, 625000, Russia; ukraintseva@mail.ru

³ Lomonosov Moscow State University, Department of Geography,

1, Leninskie Gory, Moscow, 119991, Russia; vsurkov@yandex.ru

Terrestrial ecosystems located in the Yenisei and Pechora delta and estuary zones have been studied for **radionuclide** and heavy metal contamination from remote global and regional sources. Radionuclides and heavy **metals** in soil, water, and plants were determined at different distances from the sea on landscape-geochemical **transects** across riverbanks and delta islands. In the Yenisei delta and estuary zone, local ¹³⁷Cs accumulation was **found being** associated with operation of the Krasnoyarsk Chemical Combine. The highest ¹³⁷Cs were measured **at test sites** located on islands within the Yenisei delta front, which thus appears to be a natural barrier for river**borne contaminant** fluxes into the Arctic basin. Heavy metals (Cu and Ni) in mosses and willow (leaves) species **collected** on terraces and watersheds in the lower Yenisey showed a slowly increasing trend toward the Norilsk **Combine**. The measured ¹³⁷Cs contamination of the Pechora test sites was within the global background. **Relatively high** Cu and Zn were revealed in Pechora water sampled 3 km downstream of Naryan-Mar city. These **patterns** may be used for purposive contamination tracing.

Copyright © 2011 E.M. Korobova, N.G. Ukraintseva, V.V. Surkov, E.A. Dombrovskaya, All rights reserved.

INTRODUCTION

The deltas of the Yenisei and the Pechora, two large rivers in northern Russia, are of interest for their terrigenous input into the Arctic basin. The reported study focuses on radionuclide and heavy metal contamination of terrestrial ecosystems in the lower reaches of the Yenisei and Pechora rivers at different distances from global- and regional-scale polluters, and on redistribution of this contamination in the conjugated landscapes.

Pollution in the region comes mostly from the Norilsk Nickel Combine (NNC) with its influence zone exceeding 150 km [Ermakov and Ukraintseva, 2005] and from the Krasnovarsk Chemical Combine (KCC) which has contaminated the Yenisei floodplain downstream of the Combine [Vakulovsky et al., 1995; Kuznetsov et al., 2000; Sukhorukov et al., 2004]. The Pechora catchment belongs to few areas with almost undisturbed ecosystems and thus may serve for a reference standard against which to study natural processes in deltas and estuaries of large northern rivers [Resolution..., 2000]. Nevertheless, its territory has suffered from atmospheric radionuclide fallout during nuclear tests and from the consequences of the Chernobyl accident. According to Nifontova [2000] and the Radioactive Contamination Atlas [1998], ¹³⁷Cs contamination has duplicated after the Chernobyl accident (as measured in 1995).

METHODS

Landscape geochemical transects across different floodplain levels, ancient terraces of the Yenisei and Pechora, and the watershed periphery were located at different distances from the sea. The sampling sites were chosen at places of geochemical contrasts with presumably maximum accumulation of river- and airborne radioactive elements. The soil profiles were sampled in increments of 2, 5 and 10 cm down to the table of permafrost or groundwater (30 to 120 cm). The sampled plants were dominant species of high food and tracer importance (mosses, lichens, grasses, sedges, horsetail, willow and alder). The concentration of radionuclides was measured in air-dried samples (as air-dry weight) using a Canberra gamma-ray spectrometer (USA), analysts Borisov A.P. (Vernadsky Institute of Geochemistry, Moscow) and Kirov S.S. (Radon R&D Company), to an accuracy no worse than 5–10 % (¹³⁷Cs in soil) and 3 to 35 % (¹³⁷Cs in plants). The content of heavy metals in soil and plant samples was measured by XFA with the help of ORTEC-TEFA and SPARK-1 mass spectrometers, analysts Sorokin S.E. (Dokuchaev Institute of Soil, Moscow) and Sizov E.M. (Vernadsky Institute of Geochemistry, Moscow). Samples of water and aqueous extracts were analyzed at the Dokuchaev Institute of Soil, Moscow (analyst Grishina R.V.) and at the Esenin Ryazan' State University, by Atomic Adsorption Spectroscopy, AAS (analyst Tobratov S.A.). Micrometer- and nanometer-size particles from groundwater were extracted on membrane filters following the procedure developed at the Vernadsky Institute of Geochemistry (Moscow) [Shkinev, 2009]. Trace elements in these size fractions were determined by V.K. Karandashev.

CONCENTRATIONS AND DISTRIBUTION OF ¹³⁷Cs

The average concentration of ¹³⁷Cs in soils and plants is on the average within the global background. However, it may vary markedly (Table 1) depending on the polluting source, the geomorphology of the test sites, the type of soil and fluvial deposits, and the plant species.

In the lower reaches of the Yenisei, the 137 Cs density is the highest (up to 88 kBq/m²) in the delta front near settlement Ust'-Port within the low floodplain of the Pashkov Island. The contamination is regionalscale and comes from the Krasnoyarsk Chemical

Table 1.	¹³⁷ Cs in landscape components, air-dry weight (at time of measurements))

	Number of test sites	¹³⁷ Cs, Bq/kg			
Location of landscape transects		Soil	Plants		
			Mosses	Willow leaves	Horsetail
Yenisei delta, settlement Ust'-Port			1		
High terraces	6	1.3-282	10-137	26-108	12-53
Right-bank floodplain	5	0.2-117	30; 49	21-81	9-15
Island floodplain	7	0.8-325	10	17-61	19-44
Pechora Gulf, Bolvansky Cape High terraces	3	16-156	62; 118	67; 142	54-119
Pechora delta (settlements Yushino, Bol. Sopka, Iskateli) High terraces	5	30-215	31-125	n/d	-
Riverbank floodplain	1	10		56	—
Island floodplain	5	2.5-20	-	24-51	7-109

N o t e. Dash is not sampled, n/d is not determined.

Combine. The ¹³⁷Cs concentrations are notably lower in the Yenisei intradelta (floodplain of the Tysyara Island) (20 and 25 kBq/m²) but are likewise above the **global backg**round (2.0–2.9 kBq/m²). According to our estimates, the Tysyara site receives up to 30 % of total river discharge. The high floodplains and terraces are contaminated to a lesser degree, about the global fallout (0.4–2.8 kBq/m²). Relatively enhanced contamination (twice the background) observed in transaccumulative (interhill) depressions may be produced by ¹³⁷Cs transport with surface run-off.

In the lower reaches of the Pechora, the ¹³⁷Cs activity and density (Table 1) are the highest (150 to 215 Bq/kg) in tundra soils on watersheds and on terraces of different heights (from 7.6 to 30 m above the low-water river level). The southern terraces are less contaminated (settlement Bol. Sopka) than the northern ones (Bolvansky Cape, settlement Yushino). The greater contamination in the latter may be due to heir proximity to nuclear test sites. Unlike the Yenisei lower reaches, the activity of radiocesium in floodplain soils (2.5-25 Bq/kg) is an order of magnitude lower than on terraces. This is consistent with the absence of considerable regional radioactive polluters in the **Pechora** drainage area. Yet, the total contamination in floodplain soils (especially on islands: 2-6 **kBq**/**m**²) is commensurate with or locally higher than that on terraces (1.0-2.4 kBq/m²), i.e., contaminants **cumulate** in floodplain areas.

The ¹³⁷Cs patterns in soil profiles are of three **n types:** (1) maximum element concentration near **soil surface**; (2) contaminated top organic soil **buried** as a result of solifluction or slumping; (3) **taminated** horizons repeatedly buried during sea **cycles** of flooding and alluvial deposition. The **patterns** are characteristic of soils from, respecwatershed and terrace (1), hillslope (2), and **iplain (3)** landscapes. Peat-gley and especially peat soils in terraces show relatively enhanced ¹³⁷Cs concentrations at the active layer base where soil solutions accumulate at the boundary with permafrost and are subject to periodic freezing.

The general trend of 137 Cs biosorption by dominant plant species is an increase in the series grasses < alder, willow (leaves) < lichens < horsetail < mosses (green part) < mosses (lower brown part). The tundra plants show the highest soil-plant transfer factors (TF), as high as transfer from hydromorphic soil in the zone of Chernobyl pollution. The species that are more active potassium accumulators commonly have lower TF for 137 Cs [Korobova, 2009].

CONCENTRATIONS AND DISTRIBUTION OF HEAVY METALS (Cu, Ni, Zn)

Test sites in the lower reaches of the Yenisei show insignificant contamination with heavy metals. Their concentrations and distribution depend on the distance from the regional source. For instance, Ni concentrations increase toward the Norilsk Combine in mosses (3–5 times) and willow leaves (2–3 times) that grow on terraces and in watersheds (Fig. 1). The distribution of copper has the same patterns. The reason is obviously the air transport and the subsequent fallout of metals, as well as their secondary redistribution with river and surface runoff. The redistribution is evident in relatively higher concentrations of elements in fine alluvium and, as well as in the presence of buried contaminated floodplain soils. Enhanced Cu, Ni, and Zn in top and supra-permafrost soil horizons of high terraces in the Yenisei delta front (Fig. 2) result either from local surface contamination or from natural biological and cryogenic accumulation. Heavy metals, especially Ni and Zn, have relatively high concentrations in fine suspended sediment load in floodplain soil groundwater. The highest

Fig. 1. Ni in mosses (a) and willow leaves (b) samples from terrace ecosystems in the Yenisei delta.

Provide Statistics: ST – Cape Shaitansky; **R** – settlement Vorontsovo; KR – settlement Karaul; UP – settlement Ust'-Port. 1, 2, 3 are elementary landscape systems: 1 – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – transitory (slopes), and accumulative (depressions) (3). Other abbreviations are plant species: Hs – **Invial (high terraces)**, 2 – *Salix plant*, 5 – *Salix plant*, 5 – *Salix hastata* L; Sh – *Salix*

E.M. KOROBOVA ET AL.

Fig. 2. Vertical profiles of Cu, Ni, Zn in soils of chemically conjugate tundra systems (settlement Ust'-Port):

a – eluvial system, b – transitory system, c – eluvial-accumulative system.

Ni percentages (30-80 %) occur in suspended particles larger than $0.45 \mu m$ (Fig. 3)¹.

Floodplain soil groundwater bears higher Ni concentrations in islands within the delta front (Pashkov Island). Therefore, the delta front landscape systems serve as barriers to riverine transport of contaminants. According to the heavy metal measurements of 2010 in the Pechora water, contamination is low $(0.5 \ \mu g/l^3 \text{ Cu} \text{ and } 2.8 \ \mu g/l^3 \text{ Zn} \text{ on average})$ in the large river arms but increases three- to five-fold in small tortuous channels and near delta islands where water is slow (up to $1.5-2.0 \ \mu g/l^3 \text{ Cu}$ and $7-15 \ \mu g/l^3 \text{ Zn}$). Significant pollution in the river is due to the

Fig. 3. Heavy metals in soil groundwater (a) and Ni partitioning among fractions of micrometer- and nanometer-size particles (μ m) extracted by membrane filtration from soil groundwater samples (b).

Capitalized abbreviations stand for names of test sites: ST - Cape Shaitansky; KR - settlement Karaul; TS - Tysyara Island; PSh - Pashkov Island. 1–6, 2–7, etc. are indices of transects (left) and sampling sites (right).

¹ The fraction $<0.45 \mu$ m is commonly classified as a natural soil solution. Actually, these are solutions of dispersed soil particles, which is confirmed by membrane filtration.

Naryan-Mar city: Zn is as high as $28 \ \mu g/l^3$ in the river water 3 km downstream of Iskateli neighborhood (northern outskirts of the city), which is almost three times the maximum permissible concentration (MPC) for fisheries waters (10 $\mu g/l^3$).

CONCLUSIONS

Landscape-geochemical studies in the lower reaches of the Yenisei and Pechora rivers discharging into the Arctic basin have confirmed the possibility of tracing radionuclide and heavy metal contamination of landscape systems due to global- and regional-scale sources. Delta front island systems can act as barriers to riverine transport of contaminants. The observed accumulation patterns of elements in different components of chemically conjugated landscape systems can be used for reference in pollution tracing and monitoring.

The cooperation of the crew of R/V Akademik Petrov and the researchers from SevPINRO in organization of cruises is greatly appreciated. The was carried out as part of the INCO-COPER-CUS Project Establish and was supported by the Science Department of the Russian Academy Sciences, as well as by grants 08-05-00872 and 10-0027k from the Russian Foundation for Basic esearch.

References

Ernskov S.Yu., Ukraintseva N.G., 2005. An experience of **final gical remediation** of the territory of the Pelyatka oil-

condensate field, in: Biospheric Functions of Soils. Workshop, Book of Abstracts, Pushchino, pp. 33–34.

Korobova E.M., Ukraintseva N.G., Brown J., Standring W., 2009. Radionuclide distribution in the lower Yenisey and Pechora reaches: Landscape geochemical signatures and patterns of global and regional contamination, in: M.N. Gallo, M.H. Ferrari (Eds.), River Pollution Research Progress, NOVA Publ., N.Y., pp. 91–156.

Kuznetsov Yu.V., Legin V.K., Strukov V.N., et al., 2000. Uranium-series elements in deposits of the Yenisei floodplain. Radiochimiya, 42 (5), 470-477.

Nifontova M.G., 2000. Concentrations of long-lived synthetic radionuclides in the moss-lichen cover of highland plant communities. Ekologiya, No. 3, 202–205.

Radionuclide Contamination of European Russia, Bielorussia, and the Ukraine. An Atlas [in Russian]. Federal Geodetic and Mapping Surveys of Russia, Institute of Global Climate and Environment, Rosgidromet and RAN, Moscow, 1998, pp. 12–13.

Resolution of the International Pechora Symposium "Ecosystems of Eurasian Large River Deltas" (Syktyvkar, Komi Republic, Russia, 11–15 September, 2000. http://ib.komisc. ru/add/old/t/ru/ir/vt/00-38/08.html

Shkinev V.M., 2009. Membrane methods in geochemical studies. Proc. V International School of Earth Sciences ISES-2009, 30 p. http://www.ises.su/2009

Sukhorukov F.V., Degermendzhi A.G., Belolipetsky V.M., et al., 2004. Distribution and Migration of Radionuclides in the Yenisei Valley [in Russian]. Izd. SO RAN, Novosibirsk, 287 pp. Vakulovsky S.M., Kryshev I.I., Nikitin A.I., et al., 1995. Radioactive contamination of the Yenisei river. J. Environ. Radioactivity, 29 (3), 225-236.

> Received 14 February 2011

Zemli, 2011, vol. XV, No. 4, pp. 25-28

http://www.izdatgeo.ru

BIOGEOCHEMISTRY OF PERMAFROST LANDSCAPES IN WEST SIBERIA: IMPLICATIONS FOR ECOLOGY AND SUSTAINABILITY

D.V. Moskovchenko

Institute of Northern Development, Siberian Branch of the Russian Academy of Sciences, PO box 2774, Tyumen, 625003, Russia; land@ipdn.ru

The study concerns with biogeochemistry of landscapes in the Yamal Peninsula, including the trace-element composition of different soils and abundances of plant nutrients. The sustainability of plant-soil systems in permafrost terrains has been recognized to have two major controls: the biosorption activity of plants and contents of biogenic elements in soils. The former factor stabilizes the material composition of landscapes and shows up especially in zonal systems. The other factor controls the rate of revegetation in industrially disturbed areas, the azonal soils being best provided with mineral nutrients.

The vegetation cover has been universally accepted to be the principal control in processes responsible for the sustainability of permafrost landscapes **Intikov**, 1974; Meltser, 1994; Tsibulsky, 1995; Moskalenko, 1996; Ermokhina, 2009]. Vegetation, and peat derived from it, stabilize the thermal regime of soils and thus prevent permafrost from degradation. On the other hand, vegetation is the most changeable

Copyright © 2011 D.V. Moskovchenko, All rights reserved.