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The paper presents a new theoretical model of nucleation on ions located randomly relative to the forming 
phase, including outside the clusters of the new phase. In the case of ions inside the new phase, the energy of 
their interaction with the surrounding molecules expressed via the parameter q can be taken into account 
explicitly. The best fit of the theoretical predictions to experimental data on condensation of supersaturated 
vapor can be found by varying q for different materials, which shows temperature dependence. 
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INTRODUCTION

 Physics of permafrost-related processes deals a 
lot with issues of condensation, desublimation, and 
crystallization of water, including the stage of nucle-
ation [Anisimov, 2003]. Nucleation occurs in the at-
mosphere due to the presence of ions produced by 
cosmic radiation, and is relevant to formation of 
clouds or snow [Matveev, 1965]. 

Many theoretical studies consider ion-induced 
nucleation in terms of the classical thermodynamic 
approach [Thomson and Thomson, 1933; Tohmfor and 
Volmer, 1938; Russell, 1969; Kortzeborn and Abraham, 
1973; Rusanov, 1979; Rusanov and Kuni, 1984; Voro-
biev and Malyshenko, 2001; Toshev, 2002; Nadykto and 
Yu, 2004; Fisenko et al., 2005], proceeding from Thom-
son’s model with ions inside the clusters of the form-
ing phase. However, there are first-kind phase transi-
tions implying the existence of ions outside these 
clusters, such as ions of impurities expulsed by ice 
that forms on water crystallization [Hobbs, 1974]. Ac-
cording to simulation results, ions can be also pushed 
out to the periphery of ionic clusters during conden-
sation of water vapor on chlorine ions [Shevkunov, 
2002a,b; Dang and Smith, 1993]. Furthermore, the 
theoretical studies based on Thomson’s model neglect 
the energy of interaction between the ions and the 
molecules of the new phase in the clusters [Kusaka et 
al., 1995a,b; Brodskaya et al., 2002; Nadykto et al., 
2006].

Thus, there is a need in a new model which would 
be free from all these drawbacks and be universal, i.e., 
applicable to any first-kind phase transition. Such a 
model is suggested in this paper.

THEORY

Nucleation work. The work required to form a 
spherical cluster of a new phase within an existing 
(old) phase can be written as [Anikin, 2004; Anikin 
and Plotnikov, 2005] 
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z > y + u, y > 0, (1)

for an ion located outside the cluster (Fig. 1, a), or as
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z < y – u, y > u, (2)

for an ion fully inside the cluster (Fig. 1, b). There εold 
and εnew are the static dielectric permittivities of the 
old and new phases, respectively; q0 is the dimension-
less parameter that refers to the interaction of the ion 
with the surrounding molеcules of the cluster and ac-
counts for the ion size and the type of phase transi-
tion; 
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where e is the elementary electrical charge; Z is the 
ion charge ratio; ε0 is the electric constant; σ is the 
surface tension between the old and new phases; 
R0 is the critical radius of homogeneous nucleation 
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(p = q0 = u = 0); R is the radius of the forming cluster; 
Rion is the ion radius; r is the distance between the 
ion and the cluster center (Fig. 1). The parameter Es 
re fers to the surface energy of a critical cluster in the 
case of homogeneous nucleation. 

Equations (1) and (2) become

 Wout = Esfout(y, z), z > y + u, y > 0; (3)

 Win = Esfin(y, z), z < y – u, y > u, (4)

where
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In the case when the ion is located at the inter-
face of the spherical cluster with the old phase 
(Fig. 1, c), the nucleation work will be

 Winter = Esfinter(y, z), y – u ≤ z ≤ y + u, y > u, (7)

where the function finter(y, z) is approximated by the 
third-degree polynomial: 

 finter(y, z) = a(z) + b(z)y + c(z)y2 + d(z)y3. 

The unknowns in this equation are found from 
the continuity condition for the nucleation work 
function and its first derivative along y at y = z + u 
and y = z – u:
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Solving the systems of equations (8) with respect 
to the unknowns gives
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Taking into account (5) and (6), it is easy to ob-
tain explicit expressions for (9).

Function extremes. The model of ion-induced 
nucleation includes the extremes of the functions Win, 
Wout and Winter (see below) found as local extremes of 
the functions fin(y, z), fout(y, z) and finter(y, z) taking 
into account (3), (4) and (7). Hereafter it is assumed 
that p > 0 (εnew > εold).

Fig. 1. Formation of a spherical cluster of a new phase within an old phase, with an ion outside (a) or inside 
(b) the cluster, or at the new-old phase interface (c). 
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With the introduced parameter θ = ( )z y
2 , the 

function fin(y, z) can reach its local extremes along 
the parametrically specified lines
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Line (10) corresponds to local maximums at 
0 1≤ ≤θ θin  and to local minimums at θ θ θin in1 2≤ ≤ , 
while (11) is a line of local minimums; θin1 and θin2 are 
the roots of transcendent equations of the form 
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and pсr is the critical parameter: barrierless nucleation 
can take place at p pFcr ≤ 1( )θ . Solving (12) gives θin1 
and θin2.

Judging by the positions of its local extremes, the 
function fout(y, z) has only lines of local maximums 
specified parametrically as 
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Lines (13) and (14) are the branches of a single 
curve that meet at θ = θout, while θout is found by sol-
ving the transcendent equation 

 pQ p( ) ,θout cr= = 0 210 937 5 .

As we can show, the function finter(y, z) has only 
a line of local maximums in its domain of definition 
( y u z y u− ≤ ≤ + , y > u), and this line is given by
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The curves of local extremes calculated with 
(10), (11), (13)–(15) for a specific case are shown in 
Fig. 2.

Fig. 2. Local extremes of the functions fin(y, z) 
(curve 1), fout(y, z) (curve 2) and f inter(y, z) 
(curve 3).
Solid and dash lines, respectively, correspond to local maximums 
and minimums; p = 0.07, εnew/εold = 40, q0 = –0.27, u = 0.4.
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Then the values of the respective functions 
fin(y, z), fout(y, z) and finter(y, z) can be found pro-
ceeding from the known position of the local maxi-
mum line. Namely, 
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The values of the function fin(y, z) along the lo-
cal minimum line are found in a similar way.

Nucleation rate. The rate at which a phase nu-
cleates within an old phase in the presence of ions can 
be written as [Anikin and Plotnikov, 2007] 
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where N1 is the concentration of isolated molecules in 
the old phase; n is the concentration of ions; υ is the 
volume of a single molecule in the new phase;  j is the 
flux of molecules adjoining the cluster, which depends 
on the external thermodynamic conditions, on the 
origin of material subject to the phase change, and on 
the type of this change; W(y, z) is the nucleation work, 
which is described by (3), (4), or (7) depending on the 
function definition domain and is in the general form 
W(y, z) = Esf(y, z); k is the Boltzmann constant; T is 
the temperature;
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The nucleation rate written as (16) applies to 
any phase transition, and (16) is its most universal 
expression in this sense.

The J/J0 ratio of nucleation rates, where J and J0 
correspond to nucleation on ions and homogeneous 
or spontaneous nucleation, respectively, is found with 
J0 being generally [Strickland-Constable, 1968]:
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and for a spherical cluster, 
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With regard to (18), equation (16) becomes
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Dividing it by (18) gives the sought ratio:
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Equation (19) for the J/J0 ratio is of special im-
portance as it allows comparing quantitatively the 
nucleation rates in the presence of ions and in their 
absence (spontaneous nucleation), i.e., (19) shows ex-
plicitly how ions can influence the nucleation rate.

Like (16), equation (19) is a key one in the sug-
gested model. The double integral in it can be found 
only numerically, but then it becomes possible to ap-
ply numerical integration of single-variable functions 
using the method of steepest descent (saddle point):
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This approximation is valid at E f kTs max ( ) >>1 . 
Substituting (20) into (19) and taking into account 
the definition domains of the functions fin(y, z), 
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fout(y, z) and finter(y, z), for the case of p > 0, we 
 obtain
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where zinter1 is the z coordinate of the point where 
the curve of local maximums of the function fin(y, z) 
crosses z = y – u; zinter2 is the z coordinate of the point 
where the curve of local maximums of fout(y, z) crosses 
z = y + u (Fig. 2). In the first and third integrals, 
we proceed from integration along z to that along 
θ, bearing in mind that it follows the line of local 
maximums: 
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The values of zinter1, zinter2, θinter1 and θinter2 are 
found by solving the transcendent equation systems
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while θmax is found from the solution to 
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Equation (21) can be written as
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Integrals (24)–(26) can be calculated only nu-
merically. The values Iin, Iout and Iinter are proportion-
al, respectively, to the contributions of ions inside and 
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outside the nuclei, and at the new-old phase interface 
to the nucleation rate  J. Therefore, (22) is much more 
informative than (19) containing a double integral, 
which validates the use of the steepest descent me-
thod.

THEORY AND EXPERIMENT, COMPARED

The suggested theoretical model was applied to 
the case of vapor-liquid phase transition, when 

 N
P

kT1 = ,  R
kT S0

2= συ
ln

,  j
P

mkT
= α

π2
,  S

P
P

=
eq

,

(if the thermal equation of state for ideal gas is 
valid) [Strickland-Constable, 1968], where α is the 
condensation coefficient close to unity; m is the 

molecular mass of the material subject to the phase 
transition; S is the vapor supersaturation; P is the vapor 
pressure; Peq is the vapor-liquid equilibrium pressure. 
By varying the parameter q0 included implicitly 
into (21), one can find such values q = Esq0 for some 
materials at which the theoretical results fit well the 
experimental data on critical vapor supersaturation 
Scr at n = 5.5⋅105 cm–3. The critical supersaturation Scr 
corresponds to the case when  J = 1 cm–3/s.

The theoretical results for a fixed q value are 
compared in Fig. 3 with experimental data reported 
by Rabeony and Mirabel [1987]. Additionally, the fig-
ure shows a curve of spontaneous nucleation calcu-
lated using (17), as well as a curve of ion-induced 
nucleation calculated on the basis of Thomson’s mod-

Fig. 3. Temperature dependence of critical vapor supersaturation for tetrachloromethane (a), trichloro-
methane (b), o-dimethylbenzene (c), methanol (d), ethanol (e), and water (f), at n = 5.5⋅105 cm–3.
Points are experimental data [Rabeony and Mirabel, 1987]; solid line is theoretical curve at different q values: –1.30 eV (a), –1.45 eV 
(b), –1.43 eV (c), –1.70 eV (d), –1.34 eV (e), –1.84 eV (f); chain line is the curve of ion-induced nucleation according to Thomson’s 
model; dash line is the curve of homogeneous nucleation (n = 0).
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el [Volmer, 1939; Kashchiev, 2000] assuming that each 
ion forms a stable associate and is a center of nucle-
ation. The theoretical curves in Fig. 3 were obtained 
at q = const, but the best fit to the experiment was 
achieved by varying this parameter. The values of q 
corresponding to the best fit between the theory and 
the experiment for different materials obviously de-
pend on temperature (Table 1, Fig. 3). 

Note that most of the calculations were per-
formed at u = 0.4. This dimensionless radius (in R0 
units) corresponds to the characteristic radius of the 
associate ion, i.e., an ion surrounded by molecules. 
The existence of such stable associates is consistent 
with the curve of local minimums in Fig. 2. Modeling 
shows that the magnitude of u causes only a minor 
effect on the final result. For example, the change in q 
was within 0.01 eV as u increased from 0.3 to 0.5.

CONCLUSIONS

The theory of single-component nucleation on 
ions has been presented above in its universal form 
applicable to any first-kind phase transition. It differs 
from the other existing theories of ion-induced nucle-
ation as it implies the location of ions either inside or 
outside the cluster of the forming phase. Further-
more, it accounts for the energy of local interaction 
between the ion and the surrounding molecules in the 
explicit form (via q). Estimating the energy of this 
interaction is a separate research objective, but it can 
be found theoretically by matching calculations and 
experimental results. 

The consideration above has focused on the case 
of nucleation when the static dielectric permittivity 
of the forming phase is larger than that of the old 
phase around the clusters. Meanwhile, similar model-
ing (using the steepest descent method) can be per-
formed for the case when the new phase has a smaller 
static permittivity than the old phase. 
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