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The paper provides accurate assessment of the spatial inhomogeneity of soil organic carbon (SOC) stocks 
in the permafrost-aff ected soils of the European Northeast, using mean values (standards based on samples) of 
SOC stocks for each of the soil taxa and other georeferenced factors. A very high correlation was observed be-
tween soil organic carbon stocks and environmental factors (combined soil taxa, mesotopography, climatic 
characteristics), which suggests that SOC stocks tend to be directly controlled by them. It has been demon-
strated that, in conjunction with soil taxa, the absolute height, and the amount of precipitation in June and July 
play the most important role in SOC stocks dynamics, whereas the terrain dissection appears a less signifi cant 
characteristic. When calculated using reference values, the amount of SOC stocks averaged 32.0 kg⋅m–2 for the 
region, while with such additional factors as climate and topography, the SOC stocks were estimated at 
21.6 kg⋅m–2 . This model served as a basis for creation of the SOC stock map at a regional scale.
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INTRODUCTION

Soil organic carbon (SOC) is one of the most im-
portant components of soil largely influencing the 
growth of plants and acting as source of energy and 
thereby improving soil structure. Potential impacts 
of climate changes on agricultural productivity and 
increased greenhouse gases emissions in the atmo-
sphere have called for the growing interest in SOC 
studies due to the heightened need for estimation of 
its stocks, its stability and susceptibility to tempera-
ture changes, etc. [Jobbagy and Jackson, 2000; Lal, 
2004; Houghton, 2007; Schuur et al., 2009].

Estimation of SOC stocks in the Arctic and Sub-
arctic regions have become of particular concern due 
to the fact that most of soil organic carbon is con-
served in the permafrost. According to the Intergov-
ernmental Panel on Climate Change [IPCC, 2007] 
projections, temperatures in the high latitudes will 
increase signifi cantly in the 21st century, therefore, in 
contrast to the temperate and tropical latitudes, the 
arctic and subarctic ecosystems will become particu-
larly vulnerable components of the global carbon cy-
cle [Schuur et al., 2008; McGuire et al., 2009]. Despite 
the signifi cant diff erences and uncertainties in the 
calculations, most researchers estimate the SOC pool 
stored in the permafrost to be about double size of the 
atmospheric carbon stock [Schuur et al., 2009; Tarno-
cai et al., 2009]. Therefore, a more accurate assess-
ment of spatial heterogeneity of SOC stocks in per-
mafrost terrains is needed [Johnson et al., 2011]. Only 
few works provide region-specific calculations for 
spatial variability of SOC in the entire strata of the 
soil profi le (O–B–C horizons), in the active layer and 
permafrost horizons [Hugelius et al., 2011; Pastukhov 
and Kaverin, 2013]. These papers yielded reference 
values for each of the soil types, and then, based on 

the generated large-scale soil maps, the SOC stocks 
were calculated in individual sites occupied by the 
tundra and forest-tundra. Soils were sampled accord-
ing to two separate sampling methodologies, transect 
sampling and stratifi ed random sampling. Transects 
were chosen so as to represent the main vegetation 
types and geomorphology of the landscape based on 
field reconnaissance and they measured 900 m in 
length at 100 m intervals. Nevertheless, these estima-
tes (when applied to the entire region) appear quite 
rough, as the soil cover is exceedingly heterogeneous 
and its diversity and complexity increases at higher 
spatial resolution. Therefore, to improve the accuracy 
of SOC stocks estimates it is necessary to use the spa-
tially georeferenced factors (physical and chemical 
properties of soil, climate, micro-organisms, relief, de-
posits, soil age and spatial coordinates). Some studies 
using a number of these factors have shown that this 
approach yields a more accurate representation of 
spatial variability in soil properties, thus lowering the 
prediction error [Thompson and Kolka, 2005; Rasmus-
sen, 2006; Meersmans et al., 2008].

The simulation studies of the SOC stocks dy-
namics and spatial distribution included climate 
modeling, which demonstrated gradual degradation 
of permafrost and, as a consequence, increased SOC 
emissions in the form of greenhouse gases [Lawrence 
et al., 2008; Koven et al., 2011; Schaefer et al., 2011]. 

However, these studies based on the models with 
fairly rough extrapolation due to the limited number 
of fi eld data contain signifi cant drawbacks, and there-
fore resulted estimates of SOC often fail to refl ect the 
actual spatial mosaic of the soil cover. These models 
are often used, though, to predict the SOC stocks ba-
lance rather than possible losses of SOC from the pe-

Copyright © 2016 A.V. Pastukhov, All rights reserved.

http://earthcryosphere.ru/


33

METHODOLOGY FOR SPATIAL MODELING OF SOIL ORGANIC CARBON STOCKS IN THE NORTH OF EUROPEAN RUSSIA

rennially frozen strata, which estimates range very 
widely, depending on the climate model scenario and 
parameters included in the model.

For example, for scenario with the most warming 
(representative concentration pathway (RCP) 8.5) 
the projected emissions of SOC confi ned in the per-
mafrost are 19–45 Gt by 2040, 162–288 Gt by 2100 
and to 381–616 Gt by 2300 out of 1700 Gt of total 
carbon held in the permafrost of the Northern Hemi-
sphere [Schuur et al., 2013].

The purpose of this study is to analyze the SOC 
stocks dynamics aff ected by the environmental fac-
tors (soil, topography and climate) at a regional scale 
and to build the explicit generalized linear model of 
the spatial distribution of SOC stocks on the south-
ern limit of the European permafrost zone, which in-
cludes: 1) real fi eld data with spatially linked SOC 
stocks in major soil taxa; 2) climate data (air temper-
ature and the amount of rainfall); 3) geomorphologi-
cal data (quantitative characteristics of the relief). 
This approach can signifi cantly increase the spatial 
resolution (up to 300 meters in 1 pixel) and reduce 
the prediction error.

The advanced planning includes building predic-
tive models and maps of SOC stocks projected for 
2050, 2100 and 2199 years, using various climate sce-
narios, such as for example E-GISS and HadCM3.1

STUDY AREA

The study area is located in the European Nor-
theast with its latitude and longitude is 59°00′–
63°10′ E and 66°42′–67°30′ N, respectively, and co-
vers 18 132.55 km2, comprising the middle portion of 
the Usa river (the main tributary to the Pechora) 
basin and – as it delimits the southern boundary of 
permafrost and is attributed to the “tundra–northern 
taiga” regional ecotone, i.e. the most susceptible to 
climatic and (or) human-induced changes – was 
 se lected to be the actual test site for this study. The 
focus region represents by itself the Russian Plain 
terminus gently sloping to the north, composed by 
Precambrian, Silurian, Devonian, Permian, Triassic, 
Jurassic, Cretaceous deposits which are covered by 
massive (averaging 80–100 m) Quaternary deposits 
with a complex facial structure [Atlas..., 2010]. Its 
geomorphology, besides the tectonic movements that 
had basically shaped the relief, also involved exoge-
nous proces  ses – the marine transgression, glacia-
tions of the Quaternary and water erosion taking 
place in the interglacial.

Parent material that participated in soil-forma-
tion processes are moraine, fl uvioglacial, eluvial-delu-
vial, lacustrine-alluvial, alluvial, lacustrine-boggy 

deposits, with the latter represented by sandy-clayey 
sediments and peatlands. The climate of the study 
area is moderately continental and moderately cold. 
The mean air annual temperature (MAAT) is about 
–5 °С, average annual amount of precipitation varies 
from 600 to 700 mm, two thirds of which falls on the 
warm period [Atlas..., 1997].

The extreme northeastern part of Europe is un-
derlain by thick and extensive permafrost, with var-
ied thicknesses (sometimes up to 50 m). However, 
recent warming of the Arctic and subarctic perma-
frost has signifi cantly changed geocryological condi-
tions in the study area. Given that permafrost under-
lying the beds of major watercourses are penetrated 
by a system of through taliks in watershed areas, the 
permafrost table has a complex confi guration there. 
The areas of merging and non-merging permafrost 
tend to alternate, with the latter being predominant 
type [Afanasiev, 1986].

The vegetation cover of the study area is repre-
sented by combinations of dwarf birch tundra, raised 
bogs, patches of spruce and birch thin forests. For the 
most part, fl ora is broadly represented by subarctic 
species, which are pointedly remarkable in the com-
positions of plant communities. Poorly drained areas 
are occupied by peat plateaus, with the large-mound 
type (as termed in Russian literature) predominating.

METHODS
1. Soil survey profi les study in determinations

of carbon stocks 
Most of the fi eld determinations and samples of 

SOC stocks conducted in 2007–2008 were subse-
quently complemented by the results of further fi eld 
seasons. During the soil studies, the 153 soil profi les 
were sampled, which was followed by manual drilling 
to a depth of 1.5–2.0 m in non-permafrost soils, and 
30–50 cm into the permafrost in case of shallow (in 
the range of 1 meter) occurrence of the permafrost 
table. On peat plateaus, the samples were taken from 
the outcrops exposed by thermokarst processes dur-
ing thermokarst lakes formation, and from mounds 
tapped by manual drilling of wells to a depth of 1.5–
2.5 m. Part of the soil profiles were sampled using 
transects with a length of 900 m at 100 m interval, 
comprising a variety of vegetation types and land-
scape geomorphology. Soil samples were collected 
into the graduated cylinder sequentially from each 
horizon with vertical resolution 5–10 cm, for deter-
minations of their volume weight and subsequent es-
timation of SOC stocks. Chemical analysis of soil 
samples were carried out at “Ekoanalit”, the accred-
ited eco-analytical laboratory of Institute of Bio logy 

1 Two climate scenarios – moderate and extremely high – will be used for calculations of the projected SOC stocks changes. 
E-GISS, the moderate model of Goddard Institute for Space Research, NASA. HadCM3 (Hadley Centre Coupled Model, 
version 3) – extremely high model of Hadley Center, UK, built on the basis of atmospheric-ocean general circulation model 
(AOGCM). This is also one of the basic models used in the 2001 IPCC Third Assessment Report.
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of Komi Science Centre. The bulk volume of carbon 
content was determined on EA-1100 analyzer, where-
as acid-soluble organic carbon – employing the Ty-
urin’s method with a photometric ending. The la bo-
ratory tests were performed following the standards 
in the manual [Procedures for Soil Analyses, 2002].

SOC stocks were estimated for each profi le by 
summing up carbon stocks in each of the horizons, 
from the surface downwards to the depth of occur-
rence of parent material, by the following formula:

 ( )
=

= ρ − ÷∑
1

SOC 1 100 100
n

j j j j
j

C D L ,

where SOC – carbon total reserves in each soil 
profi le, kg⋅m–2; j = 1, 2, 3, ..., n – number of soil horizon; 
Cj – bulk volume of carbon, %; ρj – soil density, kg⋅m–3; 
Dj – thickness of each horizon, m; Lj – fraction of soil 
matrix and ice, %. 

Ice fraction in the permafrost was determined as 
a diff erence between the sample mass under fi eld con-
ditions and after drying at room temperature.

2. Cartographic works 
Satellite multispectral imaging system Landsat 7 

ETM+ in combination of channels 5, 4, 3, georefer-
enced topographic and soil maps, QuickBird high-
resolution images of individual areas and soil data 
served as a basis for creation of a soil map. Imagery 
processing was performed in the Erdas Imagine 2014 
software environment using supervised classifi cation, 
while those for soil polygons analysis – on the basis of 
ArcGIS 10.2. 

Final adjustment of soil polygons not supported 
by soil profi les was performed using digital elevation 
models (DEM) SRTM with a resolution of 90 m, 
topographic maps and maps of Quaternary deposits.

Classifi cation defi nition of soils and indexing of 
genetic horizons were given according to the World 
Reference Base for soil resources [IUSS Working 
Group WRB, 2014], since more formalized criteria are 
thereby applied for assignment of soil to a particular 
taxon in comparison with the 2004 “Classification 
and Diagnostics of Soils of Russia” and offi  cially re-
cognized by the Russian soil scientists “Classifi cation 
and diagnostics of Soils of the USSR”, published in 
1977. There were allocated 15 taxonomic units at the 
WRB subgroups level.

Average values of SOC [kg⋅m–2] for each sub-
group of soils were calculated as the mean arithmetic 
value of the SOC content in the studied soil profi les 
for each group and subgroup of soils indicated on the 
map.

3. Spatial modeling and prediction error 
The priority was given to the methodology for 

determining and creating a database of current SOC 
stocks in the context of the study region. The rela-
tionship between the studied soil characteristics (in 

this case, SOC stocks) and environmental factors 
(quantitative parameters of climate and relief) usu-
ally is statistical in nature, since it is impossible to 
incorporate infi nite number of the environmental fac-
tors. However, if the considered soil characteristic 
correlates well with the environmental factors, it can 
be predicted directly from them. 

In recent decades, this methodology has been 
widely used in ecology [Guisan and Zimmermann, 
2000], soil science [Scull et al., 2003] and agriculture 
[Shary et al., 2011] and is known as predictive model-
ing. In this simulation, the matrix for soil characteris-
tics is calculated from measurements in the dozens or 
hundreds of monitoring points, on the basis of close 
relationship with environmental factors, and serves 
as a basis for creation of a predictive map. The envi-
ronmental factors are represented by matrices, each 
describing one environmental factor and capable of 
comprising hundreds of thousands of elements.

The data on SOC stock in the study site were 
collected in 153 georeferenced points. Matrix resolu-
tion of the environmental factors equaled 300 meters, 
with all the matrices transformed to Kavrayskiy pro-
jection for the European part of Russia.

Given that at this resolution some observation 
points fell into the same matrix element (as was dis-
cussed earlier, that part of the key soil profi les were 
laid as transects with a 100 m grid step), the data 
were aggregated by averaging in each element of the 
matrix at 110 observation points (A110 set of sam-
ples). The global multi-resolution terrain elevation 
data GMTED2010 [Danielson and Gesch, 2011] at 
15″  resolution (i.e. approximately 464 m on the equa-
tor and 182 m at the region located 67° N) served as a 
reference matrix for the environmental factors. As 
many as 18 basic morphometric variables (MVs) used 
for the topography description [Shary et al., 2002]. 
Matrices for precipitation, as well as the mean, maxi-
mum and minimum temperatures for each month 
with the 30″ resolution sourced from [Hĳ mans et al., 
2005], were also used for calculating the mean annual 
and average temperatures, and cumulative amounts 
of precipitation during the winter, spring, summer 
and autumn periods.

In order to proceed with SOC reserves spatial 
modeling and predictive mapping, our data on SOC 
stocks coupled with the GMTED2010 digital terrain 
matrix with derived MVs [Shary et al., 2002], and the 
average temperatures and amounts of precipitation 
matrices [Hĳ mans et al., 2005] were pooled to form 
statistical data. Calculations of topographic attri-
butes and statistical analyzes were performed using 
the “Analytical GIS Eco” and “R2” software packages 
[Shary et al., 2011].

RESULTS

Modern digital soil map is essentially a spatial 
database of soil properties compiled from statistical 
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samples (profi les) from landscapes, rather than just a 
set of traditional polygons. Field descriptions of pro-
fi les are commonly applied to determinations of spa-
tial distribution of various soil properties, with their 
accurate measurements performed in the laboratory. 
The data are subsequently applied for approximations 
and predictions of soil properties in the unexplored 
areas. Digital soil maps fi ll these prediction uncer-
tainties, and as these are continuously updated data 
(e.g. monitoring), provide most recent information 
on the dynamic soil processes [Hartemink et al., 2008]. 
The modern advanced digital soil mapping tech-
niques thus provide open systems for new input soil 
data (e.g. SOC stocks) into predictive models of 
land scape transformations as a response to global cli-
mate and anthropogenic changes [Sanchez et al., 
2009].

Digital soil mapping for the study area includes 
information on soil taxa, their geo-referencing and 
areas (Table 1). In the structure of soil cover, 73.4 % 
of the area falls into four soil subgroups: Cryic Histo-
sols (Peat Permafrost-aff ected soils)2, Histic Cryo-
sols (Peat Permafrost-affected Gleyzems), Histic 
Gleysols (Peat-Gleyzems) and Stagnosols (Cryo-
metamorphic soils). Cryic Histosols, which occupy 
just 17.6 % of the area, make the largest contribution 
to SOC stocks, which accounts for 45.7 % of the en-
tire reserves.

Given that SOC stocks diff er signifi cantly be-
tween the allocated soil taxa, this will require high 
precision soil mapping, properly complemented by 
automated classifi cation techniques. The Landsat im-
agery contain information about the vegetation cover 
in vast areas, with large peatland complexes docu-
mented remarkably only throughout the ledum-
cloudberry tundra distributions.

However, the satellite images can be used to ex-
tract information about peatlands with varying thick-
nesses, where both soils of peat plateaus – Cryic His-
tosols (with peat cover exceeding 40 cm in thickness) 
and mineral peat-gleyzems (Histic Cryosols), 10–
40 cm thick, are developed. Differentiation of the 
geographical ranges of these groups of soils usually 
additionally requires a signifi cant amount of sections 
and reconnaissance pits.

The mapping processes included SRTM DEM 
with a 90 m resolution [The Shuttle Radar..., 2014]. 
Their product is freely available on the Internet 
(http://glcf.umd.edu/) and represents by itself a 
com bination of relief exceedances attributed to points 
of fairly fi ne regular grid, and is a digital expression of 
high-altitude terrain characteristics on a topographic 
map. The topographic variables (slope steepness, 
slope exposure, absolute elevation) in combination 
with spectral characteristics of the satellite images 
were used for spatial modeling of the predominant 

Ta b l e  1. Mean SOC content in the studied profi les 

Soils
Area ОH depth, 

cm (±SD)
Permafrost 
depth, cm 

(±SD)

SOCtot SOCperm SOCorg
N

km2 % kg⋅m–2 (±SD)

Cryic Histosols 3138.54 17.6 173 ± 94 84 ± 24 101.6 ± 42.5 54.5 ± 48.4 92.3 ± 42.7 33
Cryic Fibric Histosols 102.07 0.6 77 ± 34 142 ± 77 28.3 ± 11.9 2.8 ± 5.3 20.3 ± 10.6 5
Fibric Histosols 97.62 0.5 80 ± 14 71 ± 19 40.8 ± 4.3 9.6 ± 12.0 35.7 ± 5.6 7
Cryosols 1389.97 7.8 9 ± 5 89 ± 21 11.4 ± 2.4 1.7 ± 1.7 2.9 ± 1.4 14
Histic Cryosols 4687.74 26.5 22 ± 10 55 ± 24 24.8 ± 10.6 8.4 ± 8.8 7.7 ± 4.6 25
Fluvisols 21.11 0.1 4 ± 2 – 13.2 ± 1.3 0.0 1.5 ± 0.6 10
Histic Fluvisols 16.56 0.1 6 ± 1 – 20.6 ± 2.7 0.0 2.0 ± 0.6 4
Gleysols 481.96 2.7 14 ± 5 – 8.0 ± 3.2 0.0 3.1 ± 2.4 3
Histic Gleysols 3042.64 17.1 15 ± 8 – 19.0 ± 3.8 0.0 5.9 ± 4.8 9
Podzols 160.94 0.9 10 ± 5 – 7.4 ± 2.2 0.0 3.2 ± 1.1 2
Histic Podzols 1073.51 6.0 11 ± 3 – 12.7 ± 3.6 0.0 2.5 ± 1.5 4
Stagnosols 2161.48 12.2 9 ± 4 – 12.8 ± 3.8 0.0 2.7 ± 1.1 30
Retisols 964.29 5.4 8 ± 3 – 11.5 ± 1.3 0.0 3.0 ± 1.2 3
Histic Retisols 342.89 1.9 17 ± 5 – 16.1 ± 1.2 0.0 9.0 ± 2.2 3
Regosols* 102.25 0.6 0 – 3.6 0.0 0.0 1
Total 17 783.57 100 86 ± 113 – 39.5 – – 153
Water surface 348.98

N o t e. OH – organogenic horizon; SD – standard deviation; SOCtot – total soil organic carbon stocks; SOCperm – SOC 
stocks in permafrost; SOCorg – SOC stocks in organogenic horizons; N – number of the studied profi les.

* In the Regosols there may occur soils without surface cover, which represent primarily soils of beaches, etc. Given that 
human-induced disturbances in this particular area are insignifi cant, they are not delineated on this map. 

2 Here and elsewhere, names of soils are given after [Shishov et al., 2004].
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vegetation cover, enabling thereby the boundaries de-
tection between the vegetation classes.

The generated soil map of SOC stocks for the re-
gion is wholly digital, rather than digitized (as, for 
example, the existing electronic version of the State 
soil map at 1:1 million scale), providing a comparison 
of all types of spatial information with GIS. There-
fore, the non-mapped areas can be easily extrapolated 
on the basis of the existing map. This map, however, 
remains static, nor allowing projecting the existing 
soil map ahead by calculating, for example, SOC 
stocks for all points and starting a new SOC layer em-
ploying the predictive function.

The above discussed largely determines the use 
of spatial predictive modeling methods, represented 
inter alia by scorpan-SSPFe (soil spatial prediction 
function with spatially autocorrelated errors) [Mc-
Bratney et al., 2003]. This method benefi ts largely the 
predictive soil mapping and is described by the fol-
lowing formula proposed by Hans Jenny in 1941 
(state equation for soil formation):

 Sа = f(s,c,o,r,p,a,n),

where Sa – quantitative characteristic of soil taxonomic 
unit; s – soil (other soil properties); c – climate (local 
climatic characteristics); o – organisms, vegetation, 
fauna, human; r – relief (morphometric data); p – 
parent material, lithology; a – age, time; n – spatial 
position. This method is based on the famous soil 
formula pioneered by V.V.  Dokuchaev back in 1886 
and refi ned by S.A. Zakharov in 1932 [Florinskii, 2012].

The scorpan model has seven factors or sets of 
input variables, and, ideally, each needs to be depic-
ted. Given that the model accuracy diminishes (digi-
tal estimation of soil resources) as the factors’ values 
grow (variables, or predictors), many models involve 
predictors selection procedures, e.g. using stepwise 
regression based on maximum criterion for the so 
called “tuned” coefficient of determination [Mont-
gomery and Peck, 1982; Guisan and Zimmermann, 
2000]. In practice, four to six predictors often prove 
suffi  cient, since the rest are already statistically insig-
nificant in the model [Shary et al., 2011], which 
means that when they are applied the statistical hy-
pothesis about the regression coeffi  cients being other 
than zero is rejected at the 5 % level. 

McBratney et al. [2003] relying on the analysis of 
published data highlighted key prediction factors 
most frequently used in the studies, with each having 

the following application frequency: r – 80 % of inci-
dences, s – 35 %, o – 25 %, p – 25 %, n – 20 % and 
c – 5 %, whereas a was probably not used as a factor. 
One out of seven possible factors was employed in 
40 % of research; two, three and four factors – in 
40 %, 10 and 2 %, respectively. Possibility of applica-
tion of fi ve or more factors has not thus far been con-
sidered. The most common combination involves r 
and s factors. Most studies used DEM as the main 
source of auxiliary data, followed by the remote sens-
ing of images and pre-existing soil covers.

This study involves the four factors: r, s, o, n 
(which is only 2 % of the research as of 2003), with 
generalized linear models (GLM) in the form of mul-
tiple regression type acting as the tool for analysis:

 f (W) = aA + bB + cC + dD + e + ε,

where W – response (in our case, SOC stock); A, B, C, 
D – predictors; a, b, c, d, e – regression coeffi  cients; ε – 
error; f(W) – link function, adjusting error distribution, 
is to be satisfactory for normal distribution. 

Verifi cation of the correlation ratio (the strength 
of link) between individual predictors used in GLM, 
as well as evaluation of predictors independence were 
carried out using the technique proposed P.A. Shary 
[Shary et al., 2011]3. The 18 basic morphometric indi-
ces and climate data were used as quantitative char-
acteristics in the model [Shary et al., 2002; Shary, 
2008], as was mentioned above.

Non-quantitative environmental factors such as 
soil taxa were described by indicator variables, or in-
dicators. Given that the indicator takes two diff erent 
numerical values, therefore N – 1 indicator is re-
quired for the description of N soil taxa [Montgomery 
and Peck, 1982]. In case the data from Table 1 are 
generalized, the three major taxa of soil can be dis-
criminated, which will diff er greatly in SOC stocks 
(Table 2). Documentation of the allocated three ma-
jor soil taxa will require two indicators (Table 2).

The SOC stocks in the observation points of the 
A110 set of samples (the remaining samples used in 
the models counted 110 points, since the points were 
in part aggregated, without allowing for the Rego-
sols  and water surface data) ranged from 5.8 to 
188.7 kg⋅m–2 averaging (39.9  ±  42.6)  kg⋅m–2 and 
Kvar = 107 % (coeffi  cient of variation)4.

The spatial model was thus built for SOC stocks 
in the southern tundra – forest-tundra in the middle 
portion of the Usa basin, accounting for climate and 

3 In this case, the SOC stocks are considered, which function on the test site as a response controlled by the environmental 
factors being per se independent variables (of soils, climate characteristics, relief and spatial position). This allows to raise the 
question as to what percentage of the SOC stocks spatial variability is accounted for by these factors. At the same time, such an 
approach makes it possible to avoid using “reference” values   of SOC stocks for soil taxa, and to elucidate on to what extent those 
same “reference” values   depend on climate and relief characteristics. To this end, GLM with multiple regression is used, which 
theory appears best developed at present moment [Montgomery and Peck, 1982; McCullagh and Nelder, 1989].

4 Coeffi  cient of variation is defi ned as the ratio of the standard deviation, or root mean square (RMS), to the mean, in 
percentage terms. It measures relative dispersion of the variables in statistical aggregate.
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terrain characteristics besides the soil taxa. The equa-
tion takes the form:

ln (SOC)А110 = 0.02626⋅I1Pjul+16.92 – 0.1617⋅Рjun–5.29 –

  – 0.00369⋅I2Z–4.17 + 0.04225⋅I2 +
P

2.66rot  + 8.487, (1)

coeffi  cient of determination R2 = 0.840 (Degr = 1.5 %)5; 
signifi cant probability p < 10–6.

Here, A110 is a set of samples consisting of 110 
averaged observation points, in which the SOC 
stocks have been estimated; 0.02626, –0.1617, 
–0.00369, 0.04225 are the regression coeffi  cients; I1, 
I2 are predictors indicating organogenic and mineral 
soils with the organogenic horizon at depths 0–10 cm, 
respectively (Table  2); subscripts +16.92, –5.29, 
–4.17, +2.66 are the t-statistics values6; Pjul, Рjun – the 
amount of precipitation in July and June; Z – ab-
solute elevation; rotP – one of the converted (super-
script “P”) morphometric values7, designating terrain 
dissection.

This model shows that 84 % of the spatial distri-
bution of carbon stocks ln (SOC) depends on soil 
taxa, climatic (rainfall in Pjun and Pjul) and relief char-
acteristics (height Z, terrain dissection rot). All pre-
dictors appear signifi cant in the model, i.e. the diff er-
ence between the peatlands and other soil taxa (by I1 
indicator organogenic soils are differentiated from 
other soil taxa).

Equation (1) is logarithmic, as it provides for a 
signifi cant deviation of the SOC statistical distribu-
tion from normal, which is associated with the spe-
cifi c role of soil taxa in the context of this region. The 
model was validated by the Allen cross-validation us-
ing Degr degradation criterion, which value equals 
1.5 %, at 50 % acceptable in ecology and soil science 
[Shary et al., 2011]. 

It is shown that, along with soil taxa the relief 
elevations and summer rainfall play the most impor-
tant role for SOC stocks occurrence in the region, 
while the terrain dissection appears less important. 
Thus, the estimated by reference values average SOC 
stocks totaled 32.0 kg⋅m–2 for the soil, and when com-
plemented by the climate and relief characteristics, 
carbon stocks averaged 21.6 kg⋅m–2 (Fig. 1). 

Although SOC stocks in organogenic soils (peat-
lands) are largely independent of climate and topog-
raphy, in the mineral soil taxa they are essentially 
linked to the climate and terrain properties, which 
has diminished average estimates of the SOC stocks, 
when besides the soil taxa, climate and topography 
are also considered. Therefore, both the currently ex-
isting SOC stocks and those speculated in the litera-
ture need to be adjusted, and it is critical that the 
average carbon stocks of soil taxa to be included in 
the calculations in conjunction with the climate and 
terrain characteristics.

DISCUSSIONS

The construction of spatial models has given rise 
to many questions critical for their correctness and 
accuracy: How realistic are the data on SOC stocks 
derived from the constructed model? Are there other 
factors aff ecting soil formation? etc. However, this 
approach has been widely used in science. The un-
doubted advantages are its low price compared to tra-
ditional methods, and that most of the software and 
the required massifs of the already selected and ana-
lyzed data are available. One of the most essential 
conditions for the model is the quality and quantity 
of the actual soil profi les data required for model cali-
bration. Ideally, the best option would be Latin hy-

Ta b l e  2. Mean SOC content in the studied soil profi les

I1 I2 Soil taxa
Area OH depth, 

cm
SOCtot SOCperm SOCorg

N
km2 % kg⋅m–2 (±SD)

2 1 Organogenic 3338.23 18.8 40–430 89.0 ± 43.7 41.7 ± 46.6 75.2 ± 48.0 35
1 1 Peaty-mineral 9163.34 51.5 18 ± 9 20.3 ± 13.6 – 6.4 ± 4.5 43
1 2 Mineral 5179.75 29.1 8.3 ± 4.4 12.5 ± 3.8 – 2.6 ± 1.2 32

Regosols 102.25 0.6 0 3.6 – 0 1
Total 17 783.57 100 – – – – 111

Water surface 348.98

N o t e. I1, I2 – indicators 1 and 2; SD – standard deviation.

5 The degradation index Degr = 100 ⋅( )−2 2
Pred 1R R  can be used to assess quality of the model’s predictions in new observa-

tion points. The empirical criterion Degr < 50 % is applied as verifi cation success criterion using Allen’s method for not too large 
sample sizes (<120) in the fi eld of ecology, soil science and agriculture, rather than in the technology-related disciplines, where the 
strength of the link between response and predictors may be much higher [Shary et al., 2011].

6 t-statistics depend on the level of signifi cance (everywhere, lower than p = 0.05) and the number of degrees of freedom 
n – k – 1, which is always less than 105 (n – size of sampling: 110, k – the number of predictors: 4).

7 For statistical analysis, the morphometric measurements were transformed according to the formulas after P. Shary [Shary 
et al., 2002], to normalize their distribution.
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percube sampling [McKay et al., 2000], the con-
strained Monte Carlo sampling scheme. This permits 
to trace the data and detect the positions taxonomi-
cally most comparable with the combination of se-
lected values, or to fi nd positions that correspond to 
the intervals of diff erent variables. In either case, a set 
of spatial coordinates (positions) is obtained, in 
which soil attribute (s) can be easily observed. 

In real cases, applicable to the high northern 
latitudes and other remote areas it is possible, prac-
tically, to collect field data (in this context, SOC 
stocks) from only a few small key sites, whereasit is 
necessary to assess, as a rule, SOC stocks in more ex-
tensive areas, where these sites resemble mere spots 
in appearance. Specifi cally, climatic characteristics 
can not be accountable in these key sites (10–15 km2 
in size)8, however, given a set of sites located in diff er-
ent areas is used, climatic factors become tangible al-
ready in the regression. 

Accordingly, extrapolation methods were intro-
duced [Lagacherie et al., 2001], to defi ne the reference 
area (key site) [Favrot, 1989], which, when assisted 
by using the spatial data layers, extrapolates well to 

a larger area. Sampling of the reference area can be 
either purposive, or systematic (the model is adjusted 
and extrapolated for the rest of the area). In this 
study, the approach employing the reference sites and 
extrapolation is critical, with the high strength of link 
(correlation ratio) (R2 = 0.84) and low degradation 
index of the model (Degr = 1.5 %) indicating a satis-
factory quality of the extrapolation.

CONCLUSIONS

The use of modern digital cartographic methods, 
such as scorpan-SSPF, in soil science allows to accu-
rately calculate and model the SOC stocks spatial 
heterogeneity in permafrost soils of the European 
Northeast.

The results and fi ndings may be presented in the 
form of raster maps for current SOC stocks and pre-
dictive maps (with possibility of space-time predic-
tion) using the existing predictive climate scenarios 
(E-GISS, HadCM3 et al.).

The high correlation between spatial variability 
of SOC stocks and environmental factors (the com-
bined soil taxa, topography, mesorelief, climatic char-

Fig. 1. Map of the model-derived carbon stocks for the study region (1).

8 As was discussed above, climatic matrices from [Hĳ mans et al., 2005] with the 30″, or 364 m resolution at 67° N of the study 
region were further used for average annual mean and meant temperatures and sums of the amounts of precipitations for winter, 
spring, summer, and autumn periods. Within a small site, 10–15 km2 in size, climatic factors vary insignifi cantly, with no observable 
infl uence on the model response. 
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acteristics) (R2 = 0.840, p < 10–6) suggests that the 
SOC stocks distribution is directly controlled by 
these factors.
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