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Predictive assessment of the regional soil organic carbon stocks has been carried out for the tundra and 
forest tundra in the northeastern part of European Russia. The obtained regional matrices and maps account for 
83 % of the changes in soil organic stocks depending on the environmental factors (combined soil taxa, terrain 
dissection, and climate characteristics – temperature and precipitation), with the calculations based on the 
moderate climate scenario E-GISS. According to the prediction model (excluding the environmental inertia) 
the resulting soil organic carbon stocks will decrease by 1.27 kg/m2 (–3.47 %) in 2050, i.e. soil organic carbon 
is predicted to be 35.29 kg/m2, whereas current soil organic carbon stocks are estimated 36.56 kg/m2.

Predictive modeling, stocks, soil organic carbon, moderate climate scenario

INTRODUCTION

Soil organic carbon (SOC) pool is the largest 
constituent in terrestrial biosphere [Jobbagy and 
Jackson, 2000], therefore its mineralization due to cli-
mate warming will speed the rise of CO2 concentra-
tions in the atmosphere. Soil carbon losses are deter-
mined by variations in temperature [Davidson and 
Janssens, 2006], moisture [Ryan and Law, 2005], and 
the levels of soil disturbance resulting from land man-
agement [Post and Kwon, 2000], and wildfi res [Har-
den et al., 2000]. Because of their high vulnerability 
to climate changes, these factors largely contribute to 
feedback synergies capable of speeding or slowing 
down accumulation of greenhouse gases into the at-
mosphere [Young and Steff en, 2009]. The pool of SOC 
stored in permafrostregions is very large [Tarnocai et 
al., 2009] and potentially labile following ongoing cli-
mate change [Zimov et al., 2006; Schuur et al., 2008]. 
According to most recent climate change scenarios, 
there’s expected a 4–7 °C increase in the mean tem-
perature in the northern European Russia, and pre-
cipitation shows an upward trend in the amount in 
winter for the end of the 21st century [Giorgi, 2006].

Average estimates of SOC pool for the Arctic 
tundra and forest tundra calculated by different 
 authors diff er by several times. These ecoregions can 
potentially actively exert their infl uence on the ongo-
ing climate changes due to huge SOC stocks and the 
rapid thawing of permafrost [Schuur et al., 2008], 

therefore monitoring of SOC spatial distribution is 
critical for correct estimates of its stocks. A great va-
riety of integrated models for SOC stocks spatial dis-
tribution pattern and their dynamics have been ac-
tively developed and tested, recently [Lawrence et al., 
2008; Koven et al., 2011; Schaefer et al., 2011]. 

Nevertheless, there are huge diff erences between 
estimates obtained through the modeling and experi-
mentally, primarily due to a low spatial resolution 
and rough extrapolation of a limited number of obser-
vations. In addition, all models have a number of 
drawbacks: the lack of vertical resolution in SOC 
stocks1, unrealistic spatial representation of the di-
versity of soil cover, in conjunction with largely ne-
glected specifi city of soil-forming processes condi-
tions at high latitudes (cryogenic aggregation, pod-
zolization, gleying, cryoturbation etc.). Despite these 
limitations, simulation techniques are often employed 
for predicting the changes in SOC stocks induced by 
climate fl uctuations. Depending on the model pro-
cesses and input parameters, permafrost carbon loss 
estimates resulted from diff erent potential warming 
scenarios range widely (e.g., 25⋅1012–85⋅1012  kg) 
[Koven et al., 2011].

The “reference” values for SOC stocks (mean 
values for soil taxonomic unit) are spatially non-uni-
form for larger (>100 km) regions, therefore, both 
climate and topography are needed to be taken into 

Copyright © 2016 А.V. Pastukhov, All rights reserved.

1 For example, carbon stocks in some models are calculated for soil layer with thickness 1 m, while in peatlands it can be 
several meters, which will remarkably impair SOC stock estimates.
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account for adequate assessment of SOC stocks in 
these regions. Given that carbon sequestration is 
largely controlled by the environmental factors (soils, 
topography, climate), it is essential to use these by 
creating time series forecasting in addition to spatial 
models for prediction of SOC stocks. The previous 
studies [Pastukhov, 2016] revealed a close relation-
ship between SOC stocks and environmental factors 
(combined soil taxa, mesorelief, climate characteris-
tics) with determination coeffi  cient R2 = 0.840, and 
statistically significant results p < 10–6. This high 
correlation resulted from environmental research 
suggests that SOC stocks are directly controlled by 
these factors [Pastukhov et al., 2012]. Unlike “pure” 
simulation models, for spatial modeling, we use real 
fi eld data rather than theoretical approaches. Firstly, 
this minimizes bias in modeling, and secondly, allows 
an empirical substantiation of model upscaling for a 
wider geographic generalizations. 

This paper concerns not only with modeling the 
current SOC stocks, but we also have computed spa-
tial-temporal generalized linear models (GLM) for 
SOC stocks, which served as a basis for the raster pre-
diction maps built for changes of SOC stocks under 
moderate climate scenario E-GISS.

STUDY AREA

The “Usa” Site is located in the Usa River basin 
in the Northeast of European Russia and, which is 
characterized by a temperate continental, moderately 
cold climate. This area is predominated by accumula-
tive glacial relief which, morphologically, is a rolling 
plain with absolute elevations (a.s.l.) of 60–190 m, 
overlain by thick Quaternary deposits. The hills 
(musyurs) are irregularly shaped, have long gentle 
slopes and fl at-topped, often swampy summits. The 
lowlands surrounding the hills are also swampy. The 
river valleys represent floodplains and first above 
fl ood-plain terraces.

The study region is located within the bounds of 
the “tundra–forest tundra” ecotone underlain by con-
tinuous permafrost in the north and sporadic perma-
frost in the southern part. The formation of cryogenic 
microrelief is primarilly associated with the occur-
rence of permafrost. The hummocky and spotty-hum-
mocky microrelief is developed almost ubiquitously 
in the fl atlands and wetland depressions, however, it 
is exceedingly rare in the areas adjacent to drainage 
lines, on essentially steep slopes, on tundra meadows, 
and at lower levels of fl oodplains. Such extensive dis-
tribution of the microrelief determines high complex-
ity of soil cover at the micro-level characterized by 
soil combinations (complexes), with soils succeeding 
each other at distances from tens of centimeters to a 
few meters. Furthermore, the formation of the micro-
relief in soils is controlled by cryoturbation processes, 
which bring about disturbances into the profi le struc-

ture, and subsurface horizons enrichment in organic 
matter transported mechanically from topmost lay-
ers. The microrelief of peat plateaus develops on the 
transition type bogs. Permafrost-aff ected (due to per-
mafrost occurring in fi rst meter of the soil horizon) 
and non-permafrost (permafrost occurs deeper than 1 
m from the soil surface) soils have a fundamentally 
diff erent thermal regime, even if they are separated by 
a distance of only several tens of meters [Mazhitova 
and Kaverin, 2007].

 The mean annual soil temperature (MAST) 
range from –0.5 to –2 °C. The northern part of the 
study area (“Rogovaya 1” Site) is characterized by 
continuous permafrost, with thickness measuring 
considerably (up to 63–68 m), while the mean annual 
ground temperature (MAGT) is indicative of “warm 
permafrost”, either approaching 0 °C, or falling down 
to –2.5 °C when it underlies peatlands and leeward 
slopes. 

Thawed windows (taliks) are confi ned to river- 
and stream-channels, and probably to large lake ba-
sins. The confi guration of the permafrost table is com-
plex due to a variety of involved factors: vegetation, 
lithology, distance from water bodies and watercours-
es, hydrogeological regime, snow cover thickness, 
type of landforms, etc. The areas of anchored and 
non-anchored type of permafrost alternate, with the 
latter dominating. The ecotone sites comprise major 
patterns of treeline and cryolithozone extent and are 
therefore exceedingly vulnerable to climate change. 
They also include extensive relict peat plateau from 
Holocene climatic optimum and thermokarst com-
plexes [Pastukhov and Kaverin, 2013].

These areas facilitate transition from shrub and 
dwarf birch tundra to thin forest-tundra grading into 
to the sparse northern taiga forests, whereas the 
structure and composition of plant communities are 
determined by the environment (solar and wind ex-
posure, thickness of snow cover, the depth of perma-
frost occurrence). The treeline in permafrost-aff ected 
areas is usually delineated along non-permafrost river 
valleys, with sparse spruce growing directly on Cryo-
sols at shallow (<1 m) occurrence of permafrost in 
the Bolshaya Rogovaya river basin.

The northern limit of tree-line is dominated by 
Picea obovata along with Betula pubescens. Shrubby 
Salix sp. and grasses are most evident along streams 
and swampy lowlands. Open fens and relict peat pla-
teaus with thermokarst complexes are typical for the 
area. Non-permafrost fens are predominantly over-
grown with Sphagnum sp., while peat plateaus (palsas 
and relict peat mounds) tend to be dominated by sub-
shrubs, mosses and lichens. Deciduous shrubs or Be-
tula nana, lichens and mosses thrive in open spaces of 
the tundra.

Seasonally-frozen (non-permafr  ost) soils (Gley-
sols, Cambisols, Retisols) develop typically under 
high bushes or forest vegetation where snow cover is 
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thick in winter, which ensures a warmer temperature 
regime of soils. Seasonally-frozen Fluvisols also de-
velop on the fl oodplains of the river valleys [Mazhi-
tova et al., 2003]. 

Peat plateaus of thermokarst complexes are 
characterized by Cryic Folic Histosols complexes 
with shallow occurrence of permafrost, and by sea-
sonally frozen Fibric Histosols in fens, and Fibric 
Floatic Histosols, developing in thermokarst lake ba-
sins colonized by vegetation. Permafrost mineral soils 
(Cryosols), as a rule, form on the windward silty clay 
tundra landscape overgrown by subshrub vegetation, 
where thin snow cover benefi t deeper cooling of soil 
and permafrost persistency in the profi le [Mazhitova 
et al., 2003]. In the transition zones and small-scale 
elements of landscape, thick (10–40 cm) peat (organ-
ogenic) horizons (Histic Cryosols, Histic Gleysols) 
also contribute to permafrost preservation. Perma-
frost soils – Cryosols, Cryic Histosols – predominate 
in the zone of continuous permafrost of the northeast-
ern part of the “Usa” Site.

This study is underpinned by the purposefully 
compiled database containing descriptions of all 
available profi les for the middle reaches of the Usa 
River basin, and reliable data on SOC stocks, as well 
as descriptions of vegetation and soils in WRB 
(World Reference Base) [IUSS, 2014].

The major sources are: 1) database of Institute of 
Biology, Komi Science Center UB RAS, used for the 
fi rst time by P. Kuhry and co-authors [Kuhry et al., 
2002] and by G. Mazhitova and co-authors [Mazhi-
tova et al., 2003]; 2) database, compiled under the 
2007–2008 CarboNorth project, and utilized by 
Hugelius and co-authors [Hugelius et al., 2011], and 
by A. Pastukhov and D. Kaverin [2013].

 Sampling sites included four small key areas in 
the transition zone of the “tundra–northern taiga” 
ecotone in the middle reaches of the Usa Rv. basin. 
Sampling points were selected randomly, however, 
hummocks or depressions were carefully avoided. For 
more comprehensive understanding of the upper or-
ganic horizons thickness variability, controlled by the 
micro-relief parameters, the sampling was done in 
triplicate (except peatlands). The selection methodo-
logy, laboratory analyses, and calculations of SOC 
stocks are described in great detail in [Hugelius et al., 
2011] or [Pastukhov and Kaverin, 2013]. The 
1:300 000 digital soil map with resolution of 15 soil 
subgroups (according to WRB classification) was 
generated for the middle Usa river comprising the 
study area of 18 132.55 km2 [IUSS, 2014]. This soil 
map was used for assessment of the current and pre-
dicted SOC stocks in the Usa Rv. basin. All soil 
groups and subgroups (WRB classifi cation) were di-
vided into three taxonomic classes diff erentiated by 
the organic horizons thicknesses. 

Organogenic horizons is the main source for 
SOC stocks replenishment. Their average carbon 

content ranges generally between 30 and 35  %, 
whereas in mineral horizons it is less than 1 %. There-
fore, the fi rst combined taxonomic class included His-
tosols soil group (thickness of organogenic horizons: 
>40 cm), with SOC stocks estimates are remarkably 
high therein. Other soil groups feature a great vari-
ability in carbon stocks, however, they can be grouped 
into two soil taxa by the organogenic horizon thick-
nesses. 

The fi rst taxon includes mineral soils with or-
ganogenic horizons varying from 0 to 10 cm, while 
the latter includes 10 to 40 cm thick layers of peaty-
mineral soil. Both modeling and predictive mapping 
for SOC stocks changes in space and time benefit 
greatly from Multiple Regression generalized linear 
model (GLM) [Montgomery and Peck, 1982; McCul-
lagh and Nelder, 1989]. In the models, SOC stocks are 
viewed as a response dependent on such independent 
variables as combined taxa soils, climate and terrain 
characteristics. The information on climate data lay-
ers comes from the WorldClim [Hĳ mans et al., 2005; 
http://www.worldclim.org]. They have high resolu-
tion (30″), obtained by interpolation and extrapola-
tion of data from 47,554 precipitation-monitoring 
and 24,542 temperature-monitoring weather stations 
(except Antarctica).

Spatial resolution of the GMTED2010 relief 
data of 15″ resolution in plan were provided by USGS 
[Danielson and Gesch, 2011]. Calculations of basic 
primary and secondary terrain attributes and statisti-
cal analyses were performed using the “Analytical 
GIS Eco” and R2 software packages developed by 
P.A. Shary [Shary et al., 2002, 2011; Shary, 2008].

A moderate climate scenario was used for pro-
jected changes in quantity of SOC stocks. E-GISS is 
the mean moderate model of NASA’s Goddard Insti-
tute for Space Research. The global annual tempera-
ture averaged 14.6 °C in 2012, which is 0.6 °C warmer 
than mid-20th century. The global mean annual tem-
perature has increased by 0.8 °C since 1880 (accord-
ing to data from 1000 weather stations).

The collected data were used to build the GML 
equations of regression written as: 

 f (W ) = aA + bB + cC + dD + e + ε,

where W is response  (SOC stocks); A, B, C, D – 
predictors; a, b, c, d, e – regression coeffi  cients; ε – error; 
f(W) – link function, which corrects error distribution, 
and obeys the normal probability law.

CALCULATIONS OF PROJECTED VARIATIONS 
IN SOC STOCKS

The forecast for global climate fl uctuations-dri-
ven SOC stocks changes in the tundra and forest-
tund ra soils in the northeast of European Russia, was 
carried out in several stages.
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I. Construction of spatial model of SOC stocks, 
using integrated climatic characteristics – sums of 
precipitation and temperatures – as predictors.

1. Spatial model of SOC stocks with total rain-
falls in July and June operating as a spatial predictor 
for, has the form of [Pastukhov, 2016]
ln (SOC)А110 = 0.026 26 ⋅ I1PJul+16.92 – 0.1617 ⋅ PJun–5.29 –

– 0.003 690 ⋅ I2Z–4.17 + 0.042 25 ⋅ I2 +
P

2.66rot  + 8.487, (1)

 R2 = 0.840 (Degr = 1.5 %), p < 10–6, 
where ln – natural logarithm; A110 – sample set from 
110 averaged observation points with estimated SOC 
stocks; 0.026  26, –0.1617, –0.003  690, 0.042 25 – 
regression coeffi  cients; I1, I2 – predictors, designating 
organogenic and mineral soils including 0–10  cm 
thick organogenic horizon, respectively; lower in-
dices +16.92, –5.29, –4.17, +2.66 are the values of 
t-statistics2; PJul, РJun – sum of the July–June rainfall; 
Z – altitude above sea level (a.s.l.); rotP – one of the 
modifi cations of superscript “P” morphometric va lues3, 
representing relief desiccation. 

The model is log-normalized, as it takes into ac-
count a substantial deviation of statistical SOC dis-
tribution from normal distribution, which is associ-
ated with the specifi c role played by soil taxa in the 
context of this region. The model was verifi ed by Al-
len cross-validation method using degradation crite-
rion (Degr), which equals to 1.5 %, with the assump-
tion that in ecology studies and soilscience 50 % is an 
acceptable level [Shary et al., 2011].

Model (1) shows that as many as 84 % of spatial 
distribution of SOC stocks ln (SOC) is controlled by 
soil taxa, climate characteristics (the sum of June РJun 
and July РJul rainfall) and relif (Z – a.s.l., rot – relief 
dissection); all predictors are signifi cant in the model, 
i.e. diff erence between peatlands (Histosols) and oth-
er soil taxa was critical (by I1 indicator organogenic 
soils is distinguished from any other soil taxa). Other 
critical factors were responsible for: the amount of 
rainfall in June РJun, term I2Z accounting for ele-
vation, and term I2rotP accounting for relief dis-
section. This equation is used for calculations of SOC 
stocks spatialdistribution.

2.  Spatial model of SOC stocks, using total 
amount of rainfall in June (PJun) and maximum July 
temperature max

JulT  as spatial predictors takes the form
 ln (SOC)А110 = 0.074 873 4 ⋅ I1 +

max
Jul 16.29T  –

 –0.170 931 ⋅ РJun–6.08 –0.018 450 4 ×

× I2 −
max
Jul 3.95T  + 0.041 644 1 ⋅ I2 +

P
2.57rot  + 8.880 005, (2)

 R2 = 0.833 (Degr = 1.5 %), p < 10–6.

It follows from model (2) that 83.3 % of spatial 
variability ln (SOC) is accounted for by soil taxa, cli-
mate (maximum July temperature max

JulT  and total 
rainfall in June РJun) and the relief dissection. First 
predicator I1

max
JulT  proves the most signifi cant and is 

related to peatlands alone: SOC stocks in peatlands 
tend to grow with increasing maximum July tempera-
ture. For linear pair correlation between I1

max
JulT  and 

ln (SOC) has R2 = 0.741. The sum of June precipita-
tion РJun and term I2rotP (accounting for local relief 
dissection) continue to operate as key factors. Term 
I2

max
JulT , accounting for maximum July temperature 

for mineral soils, replaces I2Z. Determination coeffi  -
cient in equation (2) is much lower than for model 
(1), however, given that apart from precipitation 
characteristics it is essential to take into account 
temperature variations, we will be using model (2) for 
calculations of projected changes in SOC stocks. 

3.  Spatial model of SOC stocks using total 
amounts of rainfall in July and June, included in 
equation (1), and the maximum July temperature as 
spatial predictors takes the form 

ln (SOC)А110 = –0.003 648 12 ⋅ I1(PJul–23.37 ×

× max
Jul-16.24T ) – 0.165 592 ⋅ РJun–5.87 – 0.018 520 7 ×

× I2 −
max
Jul 3.95T  + 0.041 421 1 ⋅ I2 +

P
2.55rot  + 8.664 110, (3)

 R2 = 0.833 (Degr = 1.5 %),  p < 10–6.

Model (3) replicates all predictors of model (2) 
except for the fi rst one, where instead of I1

max
JulT  we 

used I1(PJul–23.37 ⋅ max
JulT ) – the invariant, or stea-

dy combination of the July rainfall and maximum 
July temperature, calculated in a special program, in 
order to have the sum of rainfall of two months re-
maining in the prediction calculations and to add a 
temperature characteristic.

Equation (3) explains 83.3 % of spatial variabil-
ity in ln(SOC) by soil taxa, the invariant of max

JulT  
with the sum of amount of rainfall in July and relief 
dissection. 

The determination coeffi  cient in model (3) being 
slightly lower than in (1), the most appropriate use of 
this model (3) would be for predictions, because apart 
from the July and June sum of precipitation it takes 
into account maximum July temperature as well both 
for peatlands and automorphic soils. For pair correla-
tion of linear relationship between I1(PJul–23.37×
× max

JulT ) and ln (SOC) we obtain R2 = 0.744.
II. Calculation of matrices for projected cli-

mate indicators.
The calculation of the projected climate indica-

tors matrices is based on the planetary data on tem-

2 t-statistics depend on selected level of signifi cance (elsewhere below p = 0.05) and number of degrees of freedom n – k – 1, 
which is 105 elsewhere below (n = 110 – sampling size; k = 4 – number of predictors).

3 Given that statistical analysis involves spatial normalization of morphometric data, their values were modifi ed according 
to formulas by P. Shary [Shary et al., 2002].
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perature and precipitation variations from the NASA 
website (Goddard Center) with grid step 4 × 5° in 
TXT format. With the use of the “Analytical GIS 
Eco” software the data are converted into its internal 
REG format. 

Then, the data are interpolated with Delaunay 
method in several steps using the same software, to 
obtain matrix with lattice spacing 0.63°. The result-
ing matrix is converted into vector data (points), and 
fi nally into a given projection. A set of points with the 
predictive data is used as a response in the multiple 

Fig. 1. Map (matrix) of variations in the sums of 
monthly rainfall for July 2050 (ΔPJul, mm) based on 
results of prediction model (4) and climate change 
scenario E-GISS.

Fig. 2. Map (matrix) of variations in the sums of 
monthly rainfall for June 2050 (ΔPJun, mm) based on 
results of climate change prediction model E-GISS.

Fig. 3. Map (matrix) of variations in maximum July 
temperature for 2050 (ΔTJul, °С) based on results of 
climate change prediction model E-GISS.

regression equation, with the basic values of the re-
lated climatic indicators, geographic information, and 
terrain characteristics acting as variables.

The regression equation below describes the re-
lationships of projected variations of sums of monthly 
rainfall for July 2050 according to E-GISS (ΔРJul_
G50) scenario4 with basic mean values of the sums of 
monthly rainfall for July (РJul_BASE), and coordi-
nates Х and (X + Y)/21/2:

ΔРJul_G50 = –1.505 066 ⋅ X – 0.539 999 ⋅ РJul_BASE – 

 – 0.411 735 ⋅ (X + Y)/21/2 + 3.743 639, (4)

 R2 = 0.836, p < 10–6.

In equation (4) the relationships are fairly strong 
(R2 = 0.836). For the study region, the projected 
changes in sums of the July rainfall increase with de-
creasing basic main rainfall for July (РJul_BASE) 
moving west (longitude X with negative relation-
ship) and southwest (variable (X + Y)/21/2 with a 
negative sign). The map of PJul_G50 changes built on 
the basis of the identifi ed relationships is shown in 
Fig. 1.

The projected changes in the June rainfall pat-
tern for 2050 according to E-GISS scenario (ΔРJun_
G50) with basic mean values for rainfall in June 
(РJun_BASE), and Х and (X + Y)/21/2 coordinates 
are described by the following model: 

ΔРJun_G50 = –0.895 675 ⋅ X + 0.759 441 ⋅ (X + Y)/21/2 +

 + 0.645 738 ⋅ РJun_BASE + 0.317 421, (5)

 R2 = 0.415, p < 10–2.

4 The ΔРJul_G50 value – is diff erence between projected changes in the sum of the July rainfall for 2050 according to E-GISS 
scenario and basic mean (current) values of sum of the July rainfall.
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In equation (5) for ΔРJun_G50 relationships ap-
pear weaker (R2 = 0.415). The projected variations in 
sums of rainfall in June tend to grow with increasing 
basic mean sum of rainfall in June (РJun_BASE) mov-
ing west (longtitude Х with negative sign) and to the 
northeast (variable (X + Y)/21/2 with negative sign). 
Map of РJun_G50 variations built according to equa-
tion (5) is shown in Fig. 2.

The model shown below describes relationships 
between projected changes in the E-GISS (Δ max

JulT _
G50) scenario based maximum temperature of 
July for 2050 and basic mean maximum temperature 
values for July ( max

JulT _BASE), coordinates Х and 
(X – Y)/21/2:

   Δ max
JulT _G50 = 0.055 02 ⋅ max

JulT _BASE + 0.354 284 ×

 × X + 0.207 777 ⋅ (X – Y)/21/2 + 0.121 935, (6)

 R2 = 0.983, p < 10–6.

In equation (6) relationships are very strong 
(R2 = 0.983), which allows to infer that in the context 
of the study area, the projected variations in maxi-
mum temperature of July increase with growing basic 
mean temperature, moving east (variable Х with pos-
itive sign) and south-east (variable (X  –  Y)/21/2 
with positive sign). The resulting map of changes in 
Δ max

JulT _G50 based on the revealed relationships is 
shown in Fig. 3.

III.  Calculation of changes in SOC stocks 
based on spatial models for the base period and 
forecasted temperature and precipitation data 
from the set of sampling points.

The following average changes of climatic char-
acteristics were calculated for 2050 using the E-GISS 
model through a set of samples (110 points) obtained 
using matrix maps (Fig. 1–3) for:

1) sum of rainfall in July (РJul) – an increase of 
(2.59 ± 0.04) mm from 54.38 mm (i.e. by 4.76 %);

2) sum of rainfall in June (РJun) – an increase of 
(0.43 ± 0.04) mm from 41.22 mm (i.e. by 1.05 %);

3) maximum July temperature ( max
JulT ) – an in-

crease of 0.41  °С from (18.89  ±  0.15)  °С (i.e. by 
2.15 %);

4) stable spatial compatibility between the sum 
of monthly rainfall in June and maximum July tem-
perature (PJul – 23.37 ⋅ max

JulT ) – compatibility decre-
ases from –387.19 ± 3.55 to 6.89 (i.e. by 1.78 %).

By using equation (1), in which basic values РJul 
and РJun are substituted with predicted estimates in 
110 points, we obtain: 

1) average predicted SOC stocks in the study re-
gion are estimated 38.29 kg/m2 for the year 2050;

2) average base SOC stocks estimate derived 
from equation (1) equals to 36.49 kg/m2;

3) variations in the amount of SOC stocks are 
estimated to be +1.80 kg/m2, or +4.92 % by the year 
2050.

Calculations of changes in the amounts of SOC 
stock using the equation (1) without parametrization 
of environmental inertia (e.g. delayed turnover time 
in soil carbon processes) predict carbon sequestration 
in the soils of the study region by almost 5 %. The two 
“confl icting” predictors РJul and РJun (the former is 
with a positive sign in the model, while the latter is 
negative) in equation (1) indicate that an increase in 
the former is likely to cause an increase in SOC 
stocks, whereas an increase in the latter – a rise in 
emission rates.

Given that by 2050, according to the accepted 
scenario РJul will have grown by 4.76 %, while РJun – 
only by 1.05 %, the “confl ict” is resolved in favor of a 
rise in emission. The average estimates of SOC stocks 
contained in soil taxa are given below: peatlands 
+5.72 kg/m2 (or +6.58 %), mineral soils –0.02 kg/m2 
(or –0.18 %), peaty-mineral soils –0.02 kg/m2 (or 
–0.09 %). Model (1) has predicted an increase in car-
bon stocks commensurable with an increase in sums 
of monthly rainfall in July for peatlands, while 
amount of SOC stocks will slightly decrease in other 
soil taxa. 

Model (2), in which mean basic values for max
JulT  

and РJun are substituted with predicted estimates in 
110 points, yielded the following results:

1) average projected SOC stocks are estimated 
to be 35.52 kg/m2 by the year 2050; 

2) average base SOC stocks based on equation 
(2) are estimated at 36.55 kg/m2 for the year 2050;

3) variations in the amount of SOC stocks are 
expected to be –1.03 kg/m2, or –2.82 % by the year 
2050.

Model (2) not accounting for the environmental 
inertia either shows a potential almost 3 % decline or 
carbon emission in the soils of the study region. Equa-
tion (2) also has two “confl icting” predictors I1

max
JulT

(has positive relationship) and I2
max
JulT  (has negative 

relationship); in case the fi rst predictor increases, the 
amount of SOC stocks is expected to grow, while an 
increase in the second predictor is predicted to cause 
a rise in emission. One more climatic predictor РJun is 
present in model (2), having negative infl uences on 
the SOC stocks. According to the accepted scenario, 
РJun will grow by 1.05 % by the year 2050, which re-
sults in the negative carbon budget. The average esti-
mates of carbon fraction contained in soil taxa are as 
given below for: peatlands –1.53 kg/m2 (or –1.91 %), 
mineral soils –0.68 kg/m2 (or –5.89 %), peaty-mine-
ral soils –0.91 kg/m2 (or –5.20 %).

Model (2) forecasts an inconspicuous decrease in 
carbon stocks in peatlands, comparable to increased 
the sums of monthly rainfall in June (which tend to 
decrease SOC stocks in all the taxa) and a signifi cant 
decrease in stocks in two other soil taxa. 

Using model (3), where basic mean values of 
РJul, РJun and max

JulT  are substituted with projected va-
lues in 110 points, we obtain the following results: 
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1) average predicted SOC stocks estimate in the 
study region is found to be 35.29 kg/m2 by the year 
2050;

2) average base SOC stocks estimate according 
to equation (3) equals to 36.56 kg/m2;

3) variations in the amount of SOC stocks are 
estimated to be –1.27 kg/m2, or –3.47 %. 

Model (3) – without accounting for the environ-
mental inertia – shows a potential decline by almost 
3.5 % in SOC. In equation (3) we used the largest set 
of climate factors (РJul, РJun and max

JulT ), acting as pre-
dictors. Given that their values are growing, this will 
cause a decrease in soil carbon throughout all the 
taxa. The average estimates of the carbon fraction 
contained in soil taxa are as given below for: peat-
lands –2.19  kg/m2 (or –2.76  %), mineral soils 
–0.71  kg/m2 (or –6.19  %), peaty-mineral soils 
–0.96 kg/m2 (or –5.26 %).

CONCLUSIONS

Analysis of three spatial-temporal models with 
diff erent climate predictors for one set of samplings 
and one predictive climate change scenario allowed 
to demonstrate how close the results are and assess 
the prediction robustness.

The calculation of changes in SOC stocks using 
equation (1) without taking into account the envi-
ronmental inertia (regardless of the delayed turnover 
times) predicts an increase of carbon sequestration in 
soils of the study region by almost 5 %.

Model (2) not accounting for the environmental 
inertia either, predicts ca. 3 % reduction or emission 
of SOC in the soils of the studied region.

Model (3) taking no account of the environmen-
tal inertia predicts a decline in SOC stocks by almost 
3.5 %.

The involvement of precipitation and tempera-
ture patterns into spatial-temporal models makes it 
possible to evaluate their synergies. In this research, 
all climatic predictors were statistically signifi cant. 
Therefore model (3) appears interesting, accounting 
for two climate characteristics – totaled amounts of 
rainfall, and temperature. Model (1) has demonstrat-
ed the strongest relationship between the changes in 
SOC stocks and the environmental controls, which 
prove to be critical for spatial calculations. The re-
sults of model (3) projected a slight decrease in car-
bon stocks in soils (–3.47 %), comparable with varia-
tions in climate predictors, in percentage terms.
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